博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Solr与MySQL查询性能对比
阅读量:6622 次
发布时间:2019-06-25

本文共 7164 字,大约阅读时间需要 23 分钟。

测试环境

本文简单对比下Solr与MySQL的查询性能速度。

测试数据量:10407608     Num Docs: 10407608

普通查询

这里对MySQL的查询时间都包含了从MySQL Server获取数据的时间。

在项目中一个最常用的查询,查询某段时间内的数据,SQL查询获取数据,30s左右

SELECT * FROM `tf_hotspotdata_copy_test` WHERE collectTime BETWEEN '2014-12-06 00:00:00' AND '2014-12-10 21:31:55';

对collectTime建立索引后,同样的查询,2s,快了很多。

Solr索引数据:

Solr查询,同样的条件,72ms

"status": 0,    "QTime": 72,    "params": {      "indent": "true",      "q": "CollectTime:[2014-12-06T00:00:00.000Z TO 2014-12-10T21:31:55.000Z]",      "_": "1434617215202",      "wt": "json"    }

好吧,查询性能提高的不是一点点,用Solrj代码试试:

SolrQuery params = new SolrQuery();params.set("q", timeQueryString);params.set("fq", queryString);params.set("start", 0); params.set("rows", Integer.MAX_VALUE);params.setFields(retKeys);QueryResponse response = server.query(params);

Solrj查询并获取结果集,结果集大小为220296,返回5个字段,时间为12s左右。

为什么需要这么长时间?上面的"QTime"只是根据索引查询的时间,如果要从solr服务端获取查询到的结果集,solr需要读取stored的字段(磁盘IO),再经过Http传输到本地(网络IO),这两者比较耗时,特别是磁盘IO。

时间对比:

查询条件

时间

MySQL(无索引)

30s

MySQL(有索引)

2s

Solrj(select查询)

12s

如何优化?看看只获取ID需要的时间:

SQL查询只返回id,没有对collectTime建索引,10s左右:

SELECT id FROM `tf_hotspotdata_copy_test` WHERE collectTime BETWEEN '2014-12-06 00:00:00' AND '2014-12-10 21:31:55';

SQL查询只返回id,同样的查询条件,对collectTime建索引,0.337s,很快。

Solrj查询只返回id,7s左右,快了一点。

    id Size: 220296

    Time: 7340

时间对比:

查询条件(只获取ID)

时间

MySQL(无索引)

10s

MySQL(有索引)

0.337s

Solrj(select查询)

7s

继续优化。。

关于Solrj获取大量结果集速度慢的一些类似问题:

http://stackoverflow.com/questions/28181821/solr-performance#

http://grokbase.com/t/lucene/solr-user/11aysnde25/query-time-help

http://lucene.472066.n3.nabble.com/Solrj-performance-bottleneck-td2682797.html

这个问题没有好的解决方式,基本的建议都是做分页,但是我们需要拿到大量数据做一些比对分析,做分页没有意义。

偶然看到一个回答,solr默认的查询使用的是"/select" request handler,可以用"/export" request handler来export结果集,看看solr对它的说明:

It's possible to export fully sorted result sets using a special rank query parser and response writer  specifically designed to work together to handle scenarios that involve sorting and exporting millions of records. This uses a stream sorting techniquethat begins to send records within milliseconds and continues to stream results until the entire result set has been sorted and exported.

Solr中已经定义了这个requestHandler: 

{!xport}
xsort
false
query

使用/export需要字段使用docValues建立索引:

使用docValues必须要有一个用来Sort的字段,且只支持下列类型:

Sort fields must be one of the following types: int,float,long,double,string

docValues支持的返回字段:

Export fields must either be one of the following types: int,float,long,double,string

使用Solrj来查询并获取数据:

SolrQuery params = new SolrQuery();        params.set("q", timeQueryString);        params.set("fq", queryString);        params.set("start", 0);        params.set("rows", Integer.MAX_VALUE);        params.set("sort", "id asc");        params.setHighlight(false);        params.set("qt", "/export");        params.setFields(retKeys);        QueryResponse response = server.query(params);

一个Bug:

org.apache.solr.client.solrj.impl.HttpSolrClient$RemoteSolrException: Error from server at http://192.8.125.30:8985/solr/hotspot: Expected mime type application/octet-stream but got application/json. 

Solrj没法正确解析出结果集,看了下源码,原因是Solr server返回的ContentType和Solrj解析时检查时不一致,Solrj的BinaryResponseParser这个CONTENT_TYPE是定死的:

public class BinaryResponseParser extends ResponseParser {    public static final String BINARY_CONTENT_TYPE = "application/octet-stream";

一时半会也不知道怎么解决这个Bug,还是自己写个Http请求并获取结果吧,用HttpClient写了个简单的客户端请求并解析json获取数据,测试速度:

String url = "http://192.8.125.30:8985/solr/hotspot/export?q=CollectTime%3A[2014-12-06T00%3A00%3A00.000Z+TO+2014-12-10T21%3A31%3A55.000Z]&sort=id+asc&fl=id&wt=json&indent=true";    long s = System.currentTimeMillis();    SolrHttpJsonClient client = new SolrHttpJsonClient();    SolrQueryResult result = client.getQueryResultByGet(url);    System.out.println("Size: "+result.getResponse().getNumFound());    long e = System.currentTimeMillis();    System.out.println("Time: "+(e-s));

同样的查询条件获取220296个结果集,时间为2s左右,这样的查询获取数据的效率和MySQL建立索引后的效果差不多,暂时可以接受。

为什么使用docValues的方式获取数据速度快?

DocValues是一种按列组织的存储格式,这种存储方式降低了随机读的成本。

传统的按行存储是这样的:

 

1和2代表的是docid。颜色代表的是不同的字段。

改成按列存储是这样的:

按列存储的话会把一个文件分成多个文件,每个列一个。对于每个文件,都是按照docid排序的。这样一来,只要知道docid,就可以计算出这个docid在这个文件里的偏移量。也就是对于每个docid需要一次随机读操作。

那么这种排列是如何让随机读更快的呢?秘密在于Lucene底层读取文件的方式是基于memory mapped byte buffer的,也就是mmap。这种文件访问的方式是由操作系统去缓存这个文件到内存里。这样在内存足够的情况下,访问文件就相当于访问内存。那么随机读操作也就不再是磁盘操作了,而是对内存的随机读。

那么为什么按行存储不能用mmap的方式呢?因为按行存储的方式一个文件里包含了很多列的数据,这个文件尺寸往往很大,超过了操作系统的文件缓存的大小。而按列存储的方式把不同列分成了很多文件,可以只缓存用到的那些列,而不让很少使用的列数据浪费内存。

注意Export fields只支持int,float,long,double,string这几个类型,如果你的查询结果只包含这几个类型的字段,那采用这种方式查询并获取数据,速度要快很多。

下面是Solr使用“/select”和“/export”的速度对比。

时间对比:

查询条件

时间

MySQL(无索引)

30s

MySQL(有索引)

2s

Solrj(select查询)

12s

Solrj(export查询)

2s

项目中如果用分页查询,就用select方式,如果一次性要获取大量查询数据就用export方式,这里没有采用MySQL对查询字段建索引,因为数据量每天还在增加,当达到亿级的数据量的时候,索引也不能很好的解决问题,而且项目中还有其他的查询需求。

分组查询

我们来看另一个查询需求,假设要统计每个设备(deviceID)上数据的分布情况:

用SQL,需要33s:

SELECT deviceID,Count(*) FROM `tf_hotspotdata_copy_test` GROUP BY deviceID;

同样的查询,在对CollectTime建立索引之后,只要14s了。

看看Solr的Facet查询,只要540ms,快的不是一点点。

SolrQuery query = new SolrQuery();query.set("q", "*:*");query.setFacet(true);query.addFacetField("DeviceID");QueryResponse response = server.query(query);FacetField idFacetField = response.getFacetField("DeviceID");List
idCounts = idFacetField.getValues();for (Count count : idCounts) { System.out.println(count.getName()+": "+count.getCount());}

时间对比:

查询条件(统计)

时间

MySQL(无索引)

33s

MySQL(有索引)

14s

Solrj(Facet查询)

0.54s

如果我们要查询某台设备在某个时间段上按“时”、“周”、“月”、“年”进行数据统计,Solr也是很方便的,比如以下按天统计设备号为1013上的数据:

String startTime = "2014-12-06 00:00:00";    String endTime = "2014-12-16 21:31:55";       SolrQuery query = new SolrQuery();    query.set("q", "DeviceID:1013");    query.setFacet(true);    Date start = DateFormatHelper.ToSolrSearchDate(DateFormatHelper.StringToDate(startTime));    Date end = DateFormatHelper.ToSolrSearchDate(DateFormatHelper.StringToDate(endTime));    query.addDateRangeFacet("CollectTime", start, end, "+1DAY");    QueryResponse response = server.query(query);    List
dateFacetFields = response.getFacetRanges(); for (RangeFacet facetField : dateFacetFields{ List
dateCounts= facetField.getCounts(); for (org.apache.solr.client.solrj.response.RangeFacet.Count count : dateCounts) { System.out.println(count.getValue()+": "+count.getCount()); } }

这里为什么Solr/Lucene的Facet(聚合)查询会这么快呢?

想想Solr/Lucene的索引数据的方式就清楚了:倒排索引。对于某个索引字段,该字段下有哪几个值,对于每个值,对应的文档集合是建立索引的时候就清楚的,做聚合操作的时候“统计”下就知道结果了。

如果通过docValues建立索引,对于这类Facet查询会更快,因为这时候索引已经通过字段(列)分割好了,只需要去对应文件中查询统计就行了,如上文所述,通过“内存映射”,将该索引文件映射到内存,只需要在内存里统计下结果就出来了,所以就非常快。

水平拆分表:

由于本系统采集到的大量数据和“时间”有很大关系,一些业务需求根据“时间”来查询也比较多,可以按“时间”字段进行拆分表,比如按每月一张表来拆分,但是这样做应用层代码就需要做更多的事情,一些跨表的查询也需要更多的工作。综合考虑了表拆分和使用Solr来做索引查询的工作量后,还是采用了Solr。

 

总结:在MySQL的基础上,配合Lucene、Solr、ElasticSearch等搜索引擎,可以提高类似全文检索、分类统计等查询性能。

 

参考:

http://wiki.apache.org/solr/

https://lucidworks.com/blog/2013/04/02/fun-with-docvalues-in-solr-4-2/

 

    本文转自阿凡卢博客园博客,原文链接:http://www.cnblogs.com/luxiaoxun/p/4696477.html,如需转载请自行联系原作者

你可能感兴趣的文章
labview 中activex的初步使用方法
查看>>
Jquery 操作Html 控件 CheckBox、Radio、Select 控件
查看>>
JSP与JavaBeans
查看>>
解决Android中TextView首行缩进的问题
查看>>
oracle 查询哪些表分区
查看>>
SQL Server 2012:SQL Server体系结构——一个查询的生命周期(第1部分)
查看>>
Ubuntu启动sshd服务
查看>>
Java排序算法(三):直接插入排序
查看>>
推断图片格式
查看>>
Python 列表 min() 方法
查看>>
C语言中 Float 数据结构的存储计算
查看>>
HSF源码阅读
查看>>
1.Flask URL和视图
查看>>
【死磕jeesite源码】Jeesite配置定时任务
查看>>
MFC更换窗口图标
查看>>
[三]JavaIO之IO体系类整体设计思路 流的概念以及四大基础分类
查看>>
Java 读取某个目录下所有文件、文件夹
查看>>
朱晔和你聊Spring系列S1E2:SpringBoot并不神秘
查看>>
2013年度第一期测试沙龙 PPT下载
查看>>
我的Java后端书架 (2016年暮春3.0版)
查看>>